Chapter 5: z-Scores • Location of Scores and Standardized Distributions
-
Introduction
- What is a z-Score?
-
Location of Scores
- Where is a Score Located Within its Distribution?
- Example | Identifying z-Scores
- Example | Location of a Raw Score
- Example | Convert a Raw Score (x) to a z-Score
- Example | Convert a z-Score to a Raw Score (x)
-
The z-Score Formula
- The z-Score Formula
- Convert a Raw Score (x) to a z-Score ...with the z-Score Formula
- Convert a z-Score to a Raw Score (x) ...with the z-Score Formula
- Using the z-Score Formula to Find the Standard Deviation
- Using the z-Score Formula to Find the Mean
-
Standardizing a Distribution with z-Scores
- Using z-Scores to Standardize a Distribution
- The Shape of a Distribution of z-Scores
- The Mean of a Distribution of z-Scores
- The Standard Deviation of a z Distribution
-
Why Use z-Scores?
- Comparing Scores From Different Distributions
- Transforming the Mean and Standard Deviation of a Distribution
-
z-Scores and Samples
- Converting a Sample Raw Score (x) to a z-Score
- Converting a z-Score to a Sample Raw Score (x)
- Finding the Sample Mean From a z-Score
- Finding the Sample Standard Deviation From a z-Score
Recent Comments
- No recent comments available.